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Evaluating Quality of Screen Content Images
Via Structural Variation Analysis
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Abstract—With the quick development and popularity of computers, computer-generated signals have drastically invaded into our
daily lives. Screen content image is a typical example, since it also includes graphic and textual images as components as compared
with natural scene images which have been deeply explored, and thus screen content image has posed novel challenges to current
researches, such as compression, transmission, display, quality assessment, and more. In this paper, we focus our attention on
evaluating the quality of screen content images based on the analysis of structural variation, which is caused by compression,
transmission, and more. We classify structures into global and local structures, which correspond to basic and detailed perceptions of
humans, respectively. The characteristics of graphic and textual images, e.g., limited color variations, and the human visual system are
taken into consideration. Based on these concerns, we systematically combine the measurements of variations in the above-stated
two types of structures to yield the final quality estimation of screen content images. Thorough experiments are conducted on three
screen content image quality databases, in which the images are corrupted during capturing, compression, transmission, etc. Results
demonstrate the superiority of our proposed quality model as compared with state-of-the-art relevant methods.

Index Terms—Computer-generated signals, screen content images, quality evaluation, structural variation, human visual system
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1 INTRODUCTION

N ATURAL scene images were once the dominant input
visual signals that are reflected or emitted from natural

objects or electronic devices (e.g., televisions) into our eyes.
However, this situation was changed due to the emergence
of computers. During the past decades, with the prompt de-
velopment and popularity of computers and relevant Pads and
cellulars, computer-created visual signals have been drastically
invading into our daily lives. Such a typical example is screen
content image, which can be attributed to a mixture of natural
scene, graphic and textual images. Natural scene images have
been widely and deeply studied, including transmission and
compression [1], recognition [2], enhancement [3], saliency
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detection [4], smoothing [5], change blindness [6], etc. In
contrast, the studies of screen content images are still under
exploration, and have been gradually concerned by a rising
number of researchers, e.g., quality evaluation [7], coding [8],
segmentation [9], etc. In this paper we concentrate on quality
evaluation of screen content images.

Most traditional Image Quality Assessment (IQA) metrics
were mainly developed based upon the assumption that the
Human Visual System (HVS) is highly adapted for extracting
structural information from the scene. For illustration consider
the subsequent IQA models. In [10], [11], [12], Wang et al.
proposed Structural SIMilarity (SSIM) metric and its variants
by comparing the deviation between a corrupted image and
its associated reference image in terms of luminance, contrast
and structural similarities. Subsequently, several works were
devoted to systematically combining the structural measure-
ment with some HVS characteristics, such as visual saliency
and contrast sensitivity function, and therefore many advanced
IQA methods have been proposed [13], [14], [15], [16], [17].
Besides, quite a few neuroscience-based quality metrics were
also well established by exploiting near- and supra-threshold
properties [18], [19] or approximating the working mechanism
of free energy-based brain theory [20]. The above-mentioned
IQA models were however developed aiming at natural scene
images, and they were found to implement ineffectively in
predicting the visual quality of screen content images [21],
[22]. This motivates us to put forward a well-designed screen
content IQA technique.

In general, screen content image is more complicated as
compared with existing various kinds of images, since it may
simultaneously contain natural scene areas, document areas
and graphic areas. Despite high practical utility of screen
content images, limited contributions were made to solve the
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screen content IQA problem. In [21], the authors proposed
Screen content Perceptual Quality Assessment (SPQA) model
by first roughly dividing input images into pictorial and textual
regions followed by comparing and combining the perceptual
differences of the aforesaid two types of regions between the
corrupted and uncorrupted screen content images to yield a
single quality estimation. In [22], the authors adopt a simple
idea by deploying adaptive window sizes of local filters to
modify the classical SSIM metric [10]. To specify, a small-
size kernel is used for textual areas while a large-size kernel
is used for pictorial regions. Nonetheless, it was viewed that,
in these two metrics, segmentation is required to distinguish
textual and pictorial regions first. This on one hand noticeably
raises the computational complexity, and on the other hand
it may seriously degrade the performance of quality metrics
due to mis-segmentation which mistakes pictorial regions for
textual regions and vice versa. In [7], the authors designed a
gradient direction-based screen content image quality metric,
in which the gradient direction is extracted in accordance
to local information followed by a deviation-inspired model
for pooling towards deriving the final quality estimation. Via
experiment, this algorithm was proven to operate simply and
validly. However, it overlooks the influences of several types
of distortions, e.g., luminance shift and contrast adjustment,
which the gradient direction is not sensitive to.

Towards more accurately evaluating the quality of screen
content images, this paper proposes a novel technique based
on the analysis of structural variation. More specifically, we
suppose that, given a visual signal, human beings first conduct
basic perception of its global luminance, contrast, complexity,
etc. Obviously, improper global luminance and contrast often
lead to a large amount of quality degradation, while an image
of high complexity itself usually has a very strong resistance
to artifacts such as additive noise. We attribute this type of
factors, which varies basic perception, to global structure. In
the meantime, local information, e.g., edges and corners, plays
a critical role in affecting human detailed perception. It is
apparent that unsharp edges and unsuitably distributed corners
generally decrease the favorable impression of an image. In
our research, the factors related to detailed perception are
attributed to local structure. By systematically incorporating
the measurements of variations in global and local structures,
we finally derive a single quality index of the input screen
content image. For the readers’ conveniences, we provide an
illustration of the design theory behind the proposed quality
metric in Fig. 1. Through extensive experiments conducted on
Screen Image Quality Assessment Database (SIQAD) [21],
Quality Assessment of Compressed Screen content images
(QACS) [23], and Screen Content Transmission Loss (SCTL)
[24], our metric performs better than current IQA measures,
in performance and statistical comparisons.

The organization of this paper is arranged as follows. In
Section 2, we present the motivation and implementation
details of the proposed quality metric in turn. In Section 3,
we conduct a comparison of our metric with recently proposed
IQA methods on three screen content image databases [21],
[23], [24]. In Section 4, we provide an overall conclusion of
the whole paper.

Fig. 1: Illustration of the basic design theory behind the proposed
screen content IQA metric.

2 SCREEN CONTENT IQA MODEL

2.1 Motivation
Recently the Friston’s team provides a milestone brain theory,
which is called free energy theory [25], [26]. On this basis,
quite a few significant brain principles which refer to human
perception, learning, thinking and action in biological and
physical sciences are unified in this new free energy theory.
Simply speaking, the free energy theory provides a primary
assumption that the human brain implements the cognitive
process on the basis of a mechanism called internal generative
mechanism. Just resorting to this, the human brain leverages
a constructive manner to predict the input visual signal. This
process can be described by a probabilistic model composed
of a prior component and a likelihood component. Towards
deducing the posterior possibilities of the external visual input,
human visual sensation inverts the likelihood component.
Despite the fact that the brain is much more complicated
beyond our current level of knowledge, we can reasonably
hypothesize that there must exist a discrepancy between the
input visual signal and the brain’s internal generative model.
The discrepancy gap was found to have a close relation with
the quality of human perceptions [27].

Considering operational amenability, we suppose that the
brain’s internal generative mechanism is parametric, and it
interprets the external input visual signal by controlling the
vector of model parameters Θ. As for a visual signal S, we
define its “surprise” through integrating the joint distribution
P(S,Θ) over the model parameters’ space:

− logP(S) = − log

∫
P(S,Θ) dΘ. (1)

This mathematical expression is not easy to understand. So we
bring an assistant component Q(Θ|S) and rewrite the equation
as

− logP(S) = − log

∫
Q(Θ|S)

P(S,Θ)

Q(Θ|S)
dΘ. (2)

Note that Q(Θ|S) is an assistant posterior distribution of the
model parameters for the input signal S. It can be regarded
to be an approximate posterior to the true posterior of the
model parameters P(Θ|S). The brain attempts to reduce the
discrepancy gap between the approximate posterior Q(Θ|S)

and the true posterior P(Θ|S) by altering the parameters Θ in
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Q(Θ|S) for seeking the optimal explanation of the perceived
visual signal S.

Applying Jensen’s inequality to Equation (2), we derive

− logP(S) ≤ −
∫
Q(Θ|S) log

P(S,Θ)

Q(Θ|S)
dΘ. (3)

According to the definition in statistical thermodynamics and
physics [28], we define the right part of Equation (3) to be
free energy:

F(Θ) = −
∫
Q(Θ|S) log

P(S,Θ)

Q(Θ|S)
dΘ. (4)

Notice that, based on the Bayes’ theorem, we have P(S,Θ) =
P(Θ|S)P(S), and thus rewrite Equation (4) as

F(Θ) =

∫
Q(Θ|S) log

Q(Θ|S)

P(S)P(Θ|S)
dΘ

=

∫
Q(Θ|S)

1

logP(S)
dΘ +

∫
Q(Θ|S) log

Q(Θ|S)

P(Θ|S)
dΘ

= − logP(S)

∫
Q(Θ|S) dΘ +KL(Q(Θ|S)||P(Θ|S))

= − logP(S) +KL(Q(Θ|S)||P(Θ|S)). (5)

The above equation reveals that the free energy F(Θ) varies
as KL(Q(Θ|S)||P(Θ|S)), which represents a Kullback-Leibler
(KL) divergence of the approximate posterior against the true
posterior. We note that KL(Q(Θ|S)||P(Θ|S)) is a non-negative
component, so the free energy provides a strict upper bound.
Only if the approximate posterior Q(Θ|S) equals to the true
posterior P(Θ|S), F(Θ) achieves its minimal − logP(S). As
for a fixed visual input S, we deduce from Equation (5) that
the free energy is suppressed by minimizing the divergence
term; that is, the brain attempts to lower the KL divergence
between the approximate density and its true posterior density
when interpreting an external input visual signal.

Given a distorted image D, it can be expressed by

D = R+ ∆, (6)

where R is the reference image of D and ∆ stands for the
error difference. According to the free energy principle, the
human brain actively restores the distorted image by lowering
the error difference term, towards well visual perception or
semantic understanding. Here we suppose that the true poste-
rior corresponds to R and the inferred approximate posterior
corresponds to R′ that is restored by the human brain. The
whole process of restoration is naturally accompanied with
quality evaluation. In fact, due to some HVS characteristics,
it does not require to restore all information of the image in
the brain. For example, there is no necessity to recover the
high-frequency noise existed in the reference image because
the HVS is not sensitive to it [29]. The SSIM metric is such
an example [10]. From the viewpoint of free energy principle,
the design theory behind SSIM lies in that the brain restores
the image in luminance, contrast and structure domains, and
these three domains are selected by adjusting the vector of
model parameters Θ. On this basis, we can also explain why
the SSIM metric does not perform well on viewing distance-
changed image database [30], which is mainly because there

is no term (or feature) concerning viewing distance included
in the SSIM metric. Facing different utilities, the human brain
automatically adjusts the vector of model parameters Θ to
choose proper features for visual perception.

2.2 Measurement of Structural Variation
When evaluating the quality of screen content images, the
human brain adjusts the vector of model parameters Θ to
understand the visual input from basic and detailed percep-
tions. The human brain is a long-term well trained organ,
and thus it works in an extremely efficient manner. Based on
this, we believe that the human brain first conducts a basic
perception to the global structures of the given screen content
image, since there is no need to perceive details for very
low-contrast images (e.g., over-bright or over-dark images).
After the basic perception, the human brain will selectively
pay attention to some local structures to perceive variations
in details. Systematically integrating the aforementioned two
types of perceptions, the human brain will deliver the final
measurement of image quality.

2.2.1 Variations in Global Structures
In the human basic perception of global structures, we first
consider the influence of image global contrast on the visual
quality. Apparently, very low contrast seriously degrades the
image quality. In such condition, capturing details is almost
impossible and understanding semantic information becomes
a considerably hard task. We assume that the image R has
the benchmark luminance and contrast, and the information
entropy will change when luminance or contrast deviations
occur. Hence we adopt the Variation Of Entropy (EOV), and
we define this feature by

F1 =
E(D) + ε1

E(R) + ε1
, (7)

where ε1 is a very small constant for preventing its value too
large, and E(D) and E(R) are the entropy values of reference
and distorted images:

E = −
∫
H(ρ) logH(ρ)dρ, (8)

where H(ρ) stands for the probability density of grayscale ρ.
Towards observing the EGM’s effect, we compare different
types of distortions, including Contrast Change (CC), Motion
Blur (MB), Gaussian Blur (GB), JPEG2000 compression (J2),
JPEG compression (JP), Layer segmentation-backed Coding
(LC) [31], White Noise (WN), HEVC Compression (HC) [32],
SCC Compression (SC) [33], Transmission loss under HEVC
compression (TH) [24], and Transmission loss under SCC
compression (TS) [24]. The former seven distortions are from
the SIQAD database [21], the eighth and ninth distortions are
from the QACS database [23], and the last two distortions are
from the SCTL database [24]. It can be found in Fig. 21 that,
except contrast alteration which may reshape the histogram to

1. From the top to bottom, each box has five horizontal bars, which
respectively correspond to the maximum, 75th percentile, median, 25th
percentile and minimum values. Red crosses are outliers.
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Fig. 2: Box plot of EOV distribution across Contrast Change (CC),
Motion Blur (MB), Gaussian Blur (GB), JPEG2000 compression (J2),
JPEG compression (JP), Layer segmentation-backed Coding (LC),
White Noise (WN), HEVC Compression (HC), SCC Compression
(SC), Transmission loss under HEVC compression (TH), and Trans-
mission loss under SCC compression (TS) from three screen content
image databases.

a large extent, other distortion types have little influences on
the EOV’s distribution. Besides information entropy applied
in our study, we also consider several popular measures for
histogram comparison, which involve Earth Mover’s Distance
[34], Kullback-Leibler (KL) divergence, and Jensen-Shannon
(JS) divergence [35], but results illustrate that they do not
introduce obvious performance gain while bring about much
implementation cost.

The second feature we care about is the image complexity,
which is an essential concept in human basic perception to
visual stimulus but is substantially abstract and hard to be
endowed with a definite definition. Generally speaking, high-
complexity images are composed of more high-frequency
information, such as edges and textures, which usually have
strong noise masking effects. Clearly, an image having high
self-description ability means it has low complexity. Compared
with smooth regions, edges and textures are more difficult
to self-described. We follow this idea to estimate the image
complexity. The classical linear autoregressive (AR) model is
first taken into account, since it is good at characterizing a
broad scope of natural scenes [36] and also invariant to object
transformations such as scaling, rotation and translation [37].
Considering an image, the AR model is constructed in each
local patch:

ri = Vφ(ri) · v + di, (9)

where ri is the value of the pixel located at i in the given
image; Vφ(ri) constitutes a vector of φ member neighborhood,
v is a vector including φ AR parameters; di is the difference
error term between the given pixel and its associated output
prediction. In order to determine the optimal AR parameter
vector v, we construct a linear equation:

vopt = arg min
v

∥∥∥r−R · v
∥∥∥
n
, (10)

where r = (r1, r2, ..., rδ)
T includes the surrounding δ pixels

in a
√
δ ×
√
δ block; R(i, :) = Vφ(ri); n is the norm order.

We assign n = 2 in this work, and thus we can leverage the
least square method to find the solution of this linear equation
to be vopt = (RTR)−1RT r. The AR model was found to
perform well on textured regions whereas not good at edges,
and thus we further introduce another classical bi-lateral (BL)
filter to be combined with the AR model towards a tradeoff
better filter. We can use Equation (9) to express the BL filter
by replacing v and di with ṽ and d̃i, respectively. ṽ indicates
a group of BL filter’s parameters, which are controlled by two
components: one refers to the spatial distance of i and j (j
is the index of a neighbour pixel of i); the other refers to the
photometric distance between ri and rj . Based on this, we
define the BL filter as

g̃j = exp
{−‖i− j‖2

2σ2
1

+
−(ri − rj)2

2σ2
2

}
, (11)

where σ1 and σ2 are two constant variances used to balance
the strength between the two distances in the equation. d̃i is
also the difference term. For inheriting both the merits of AR
and BL models, we introduce a linear fusion and derive the
filtered image:

r′i =
1

1 + ωi

[
Vφ(ri)v̂ + ωi · Vφ(ri)ṽ

]
, (12)

where ωi is a space-variant non-negative weight that is used
to control the relative contributions of the above two models.
For simplicity we fix ωi as 9 for emphasizing the significance
of edges. As thus, we estimate the image complexity feature
as follows:

F2 = −
∫
H′(ρ) logH′(ρ)dρ, (13)

where H′(ρ) denotes the probability density of grayscale ρ
in the error map between the input image and its associated
filtered version, i.e., rεi = ri − r′i.

2.2.2 Variations in Local Structures
When humans conduct detailed perception on local structures,
variation in edges is our first concerned feature. There are
many effective methods which can be deployed to measure
the changes in edges, for instance, Canny operator [38], Sobel
operator [39], SSIM metric [10], etc. In comparison, the Sobel
operator has obvious advantages in efficacy and efficiency
among the three. Furthermore, we compare the Sobel operator
with its two modified versions, the Prewitt operator [39] and
the Scharr operator [40]. It was observed in results that these
three operators have very equivalent computational costs but
the Scharr operator achieved a little higher performance than
the other two. As thus, we apply the Scharr operator to the
reference image R and derive

G(R) =
√
G 2

(R,x) + G 2
(R,y), (14)

where G(R,x) = M ⊗ R and G(R,y) = MT ⊗ R, with
M = 1

16 [3, 0,−3; 10, 0,−10; 3, 0,−3] and ⊗ indicates the
convolution operation. Likewise, we can obtain G(D) by con-
volving the distorted image D with the Scharr operator. Then
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the variations in edges between the reference and distorted
images can be measured by

A(R,D) =
2G(R)G(D) + ε2

G2
(R) + G2

(D) + ε2
, (15)

where ε2 is a small fixed positive number akin to ε1. Notice
that Equation (15) has three excellent characteristics of unique
maximum, boundedness and symmetry. Actually, some recent
studies have proven the effectiveness of the Scharr operator in
capturing the local structural variations [13], [14], [15], [16].
Compared with those studies, the main difference is that we
introduce two intrinsic attributes in human perceptions. One
is that humans are more sensitive to abrupt local changes in a
sequence of signals [41], [42]. We compare an image and its
filtered version with a high-pass filter to find the local sharp
areas. To specify, for the reference image R, we generate its
filtered image as R∗ = h⊗R = (1−g)⊗R = R−g⊗R =
R−R+, where g is a low-pass Gaussian function. As stated
earlier, instead of the pixel domain, human beings pay more
attention to changes in the structural domain. Therefore we
compare R and R∗:

B′(R,R∗) = A(R,R) −A(R,R+)

= 1−
2G(R)G(R+) + ε2

G2
(R) + G2

(R+) + ε2
. (16)

When human eyes stare at a fixation point on an image, all
pixels in a proper-size of local window will be included for
perception [43]. As for pictorial regions, the local window
can be approximated as a circle, and thus the aforementioned
rotationally symmetric Gaussian function is used. However,
the situation becomes quite different when reading texts. The
second attribute refers to the human eye movement in such
condition. We assume that human eyes are adapted to saccade
from left to right when reading texts. Hence the above local
window should include the current fixation point and its right-
side pixels. Due to the saccade problem, motion blur must
be introduced anyway, and to cope with this problem, the
HVS overly enhances the visual input signal beforehand with
an associated high-pass filter. We similarly define its filtered
image asR† = h′⊗R = (1−g′)⊗R = R−g′⊗R = R−R−,
where g′ denotes a motion blur function, and we compare R
and R†:

B′′(R,R†) = A(R,R) −A(R,R−)

= 1−
2G(R)G(R−) + ε2

G2
(R) + G2

(R−) + ε2
. (17)

We provide the illustration of the two kernels in Fig. 3.
Integrating the two attributes in perceptions, we introduce a
linear weighting function:

B(R) =
1

1 + αi

[
B′(R,R∗) + αi · B′′(R,R†)

]
, (18)

where αi is a space-variant positive number for altering the
two components’ relative importance. We assign αi as the unit
based on a rough assumption that pictorial and textual parts

Fig. 3: Gaussian kernel (left) and motion blur kernel (right).

have almost equivalent sizes. We rewrite Equation (18) to be

B(R) = 1−
G(R)G(g⊗R) + 1

2ε2

G2
(R) + G2

(g⊗R) + ε2
−
G(R)G(g′⊗R) + 1

2ε2

G2
(R) + G2

(g′⊗R) + ε2
.

(19)
Note that g and g′ are fixed and Equation (19) is a function
with only one variable of R. We measure the variations in
edges by modifying A(R,D) with the weighting map B(R):

F3 =

∑
iA(Ri,Di) · B(Ri)∑

i B(Ri)
. (20)

The fourth feature refers to the measurement of variations in
corners. Corner reflects an intrinsic attribute of images, and it
has been shown to perform validly in image quality evaluation
[44]. Generally speaking, on one hand some distortion types
(e.g., noise and blur) destroy the genuine corners which exist in
the reference image but disappear after distortions introduced,
and on the other hand some distortion types (e.g., block-based
JPEG, H.264, and HEVC compressions) usually lead to the
reduction of genuine corners while the generation of pseudo
corners that occur at block boundaries. We therefore consider
comparing the reference and distorted images in terms of the
changes in corners to be an impacting factor of quality. More
concretely, we rewrite the reference image in a matrix format
R = [rij ]. We use the efficient Shi-Tomasi detector [45] to
find corners and we thus denote the corner map C(R):

cij =

{
1 if rij ∈ C(R)

0 otherwise , (21)

where rij ∈ C(R) means that a corner was detected at location
(i, j). Likewise, we denote the corner map of the distorted
image as C(D). For illustration consider some commonly seen
distortion types in Fig. 4, where we provide some examples
to reflect the changes in corners of a reference image and
its associated distorted images. Red dots denote the original
genuine corners whereas blue dots denote newly generated
pseudo corners. We can easily find the changes in corners
before and after distortion introduction. As compared with the
corner map of the reference image, several original genuine
corners disappear and meanwhile some new pseudo corners
occur due to the influence of distortions. Akin to Equation
(15), we measure the variations occurred at corners between
the reference and distorted images by

F4 =
∑
i

2C(Ri)C(Di) + ε3

C2
(Ri) + C2

(Di) + ε3
, (22)

where ε3 is a very small fixed number that is similar to ε1.
Notice that C(Ri) and C(Di) are binary maps, so we have
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Fig. 4: Comparison of genuine and pseudo corners on a reference image and its associated distorted images. Red dots denote the genuine
corners while blue dots denote pseudo corners.

C(Ri)C(Di) ≡ C(Ri)
⋂
C(Di), C2

(Ri) ≡ C(Ri) and C2
(Di) ≡ C(Di).

We can simplify Equation (22) as

F4 = 2
∑
i

C(Ri)
⋂
C(Di) + 1

2ε3

C(Ri) + C(Di) + ε3
. (23)

2.3 Proposed Screen Content IQA Metric
From the viewpoints of basic and detailed perceptions, four
features connected to global and local structures have been
extracted. How to reliably combine them becomes an urgent
and critical problem. To solve the problem, we first randomly
select three reference screen content images from the SIQAD
database, as shown in the leftmost column in Fig. 5. As
for each reference image, we compute F1, F3 and F4 of
its associated distorted images and display them in Fig. 5.
From the left and right, the second, third and fourth columns
correspond to F1, F3 and F4, respectively. Note that F2 only
depends on the reference image, so we do not include it for
comparison. Seeing the second column, the sample points are
seemingly irregularly distributed. As stated before, this feature
is sensitive to global image contrast change but disturbed very
little by other types of distortions. We use two colors (red
and blue) to separately represent contrast change and other
distortion types. Points corresponding to contrast change have
an approximating linear relationship while other points have
almost equivalent values despite that the subjective evaluation
ratings, namely differential mean opinion score (DMOS), are
different. Next we observe the third and fourth columns.
There exists an evident near-linear relationship in each plot.
Those above linear relationships have the same ordering; that
is each of them has a negative correlation with subjective
DMOS values. As for the image complexity feature, it is
used for normalization towards removing the disturbances of
distinct image contents. Moreover, it is believed that the brain

first conducts basic perception to the global structures of an
image. When global contrast is extremely low or complexity
is extremely high, which correspond to over-bright/dark or
highly noised images, details included in the image cannot be
perceived. In such condition, the brain will straightforwardly
provide the image with a very low score; otherwise, detailed
perception will be considered to estimate the variations in local
structures and the quality will be predicted by systematically
fusing the variations in both global and local structures. Via
the analyses above, the final quality index is derived based on
the subsequent function:

I(R,D) =

{
0 if F2

F1
≥ Tr

1
Fα2

∏
i={1,3,4} Fi otherwise , (24)

where Tr is a constant threshold for judging whether the
image has extremely low global contrast or extremely high
complexity; α is a fixed adjusting operator to decrease the
F2 value in order to make four features have comparable
magnitudes.

3 VALIDATIONS AND DISCUSSIONS
This section focuses on validating the performance of our
proposed quality metric with 10 mainstream and state-of-the-
art IQA models on three image quality assessment databases
related to screen content images. For convenience we provide
the proposed method with an abbreviated name, Structural
Variation based Quality Index (SVQI).

3.1 Experimental Setup
Quality Models. Recent years have witnessed an increasing
number of IQA models. The majority of them deliver well
performance and meanwhile require few operating time. This
paper selects 11 popular FR-IQA metrics for comparison.
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Fig. 5: Comparison of extracted global and local features on three reference screen content images chosen from the SIQAD database. From
left to right, four columns are in turn associated to reference images, scatter plots of DMOS versus the features of F1, F3 and F4.

• Noise Quality Measure (NQM) [46], which incorporates
Peli’s contrast pyramid, variations in local luminance mean
and contrast sensitivity, contrast masking effects and con-
trast interaction between spatial frequencies.

• SSIM [10], which compares the deviation between the
reference and corrupted images in terms of luminance,
contrast and structural similarities.

• Visual Information Fidelity in Pixel domain (VIFP) [47],
which computes the ratio of the mutual information of a
reference image and its associated distorted image to the
reference image’s information content.

• Visual Signal-to-Noise Ratio (VSNR) [18], which lever-
ages near- and supra-threshold properties and visual mask-
ing and visual summation effects in the wavelet domain.

• Feature SIMilarity in Color domain (FSIMC) [13], which
introduces phase congruency and gradient magnitude to
characterize the local image quality since the HVS under-
stands an image mainly relying on low-level features.

• Gradient Similarity Measurement (GSM) [48], which
measures the changes of gradient similarity in contrast and
structure of images considering the gradient about convey-
ing visual information and favoring scene understanding.

• Gradient Magnitude Similarity Deviation (GMSD) [15],
which assumes that the global variation of local quality
can better reflect the overall image quality than the direct
average pooling.

• Perceptual SIMilarity (PSIM) [14], which was developed
based on the supposition that the human visual perception
to image quality depends on measuring the variations of
micro- and macro-structures.

• Visual Saliency induced Index (VSI) [16], which skillfully
incorporates the variations in gradient magnitude and visual
saliency caused by distortions to infer the image quality.

• SPQA, [21], which exploits segmentation to distinguish
textual and pictorial regions and synthesizes the estimations
of perceptual quality of each type of regions to derive an
overall quality score.

• Gradient Direction-based Index (GDI) [7], which uses
local information to extract the gradient direction followed
by a deviation-inspired model for pooling.

Testing Datasets. To our best knowledge, there are three
image quality databases related to screen content images. The
first one is SIQAD [21], which was constructed by Nanyang
Technological University (NTU) in the year of 2015. This
database is composed of 20 reference screen content images
and 980 corrupted images which were produced by applying
7 types of distortions (i.e., CC, MB, GB, J2, JP, LC and
WN) at 7 intensities to those 20 reference images. More than
20 observers were invited to score the 980 images from 0
(the worst) to 10 (the best) with a unit step at a viewing
distance about 2.25 time the screen height. The DMOS value
of each image in this database is normalized to [24.2, 90.1].
The second and third databases were QACS [23] and SCTL
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TABLE 1: Comparison of twelve IQA algorithms on screen content databases. We highlight the top three models in bold.

SIQAD [21] NQM SSIM VIFP VSNR FSIMC GSM GMSD PSIM VSI SPQA GDI SVQI
[46] [10] [47] [18] [13] [48] [15] [14] [16] [21] [7] (Pro.)

SRC 0.6266 0.7583 0.8451 0.5704 0.5817 0.5483 0.7306 0.7056 0.5381 0.8416 0.8436 0.8836
KRC 0.4539 0.5682 0.6516 0.4381 0.4253 0.4054 0.5488 0.5393 0.3874 0.6803 0.6486 0.6985
PLC 0.6247 0.7615 0.8489 0.5878 0.5920 0.5686 0.7392 0.7144 0.5568 0.8584 0.8515 0.8911
MAE 8.7596 7.1854 5.9342 8.9277 8.9912 9.1663 7.3081 7.4771 9.2875 5.7890 5.9744 5.2282
RMS 11.177 9.2784 7.5650 11.580 11.537 11.775 9.6402 10.016 11.890 7.3421 7.5055 6.4965

QACS [23] NQM SSIM VIFP VSNR FSIMC GSM GMSD PSIM VSI SPQA GDI SVQI
[46] [10] [47] [18] [13] [48] [15] [14] [16] [21] [7] (Pro.)

SRC 0.6603 0.8683 0.9043 0.7172 0.9039 0.8947 0.8769 0.8683 0.8719 0.8456 0.8632 0.9194
KRC 0.4749 0.6910 0.7393 0.5383 0.7331 0.7215 0.7010 0.6897 0.6941 0.6679 0.6812 0.7623
PLC 0.6837 0.8696 0.9028 0.7050 0.9019 0.8921 0.8746 0.8680 0.8715 0.8511 0.8669 0.9158
MAE 1.3350 0.8531 0.7082 1.1869 0.7354 0.7752 0.8156 0.8582 0.8337 0.9656 0.8742 0.6608
RMS 1.6189 1.0953 0.9542 1.5733 0.9585 1.0025 1.0755 1.1015 1.0879 1.1940 1.1059 0.8909

SCTL [24] NQM SSIM VIFP VSNR FSIMC GSM GMSD PSIM VSI SPQA GDI SVQI
[46] [10] [47] [18] [13] [48] [15] [14] [16] [21] [7] (Pro.)

SRC 0.8337 0.8735 0.8595 0.8865 0.9103 0.8893 0.8870 0.8870 0.8729 0.8537 0.8892 0.9134
KRC 0.6354 0.6790 0.6411 0.7079 0.7299 0.7048 0.7085 0.7085 0.6858 0.6560 0.7057 0.7357
PLC 0.8448 0.8976 0.8937 0.9011 0.9230 0.9050 0.9038 0.9038 0.8843 0.8494 0.9186 0.9345
MAE 0.6830 0.5777 0.5898 0.5377 0.4923 0.5349 0.5220 0.5220 0.5886 0.6581 0.5091 0.4566
RMS 0.8677 0.7148 0.7273 0.7032 0.6239 0.6897 0.6938 0.6938 0.7570 0.8496 0.6407 0.5771

[24], which were established by Peking University in the year
of 2016. The QACS database is composed of 24 reference
screen content images of size 2560 × 1440, 1920 × 1080
and 1280 × 720, and 492 compressed images which were
produced based on two advanced coding technologies (high-
efficiency video coding and screen content compression). The
total of 20 inexperienced subjects were asked for scoring the
492 images from the lowest 1 to the highest 10 at a viewing
distance about 2.25 time the screen height. The MOS value of
each image in this database ranges from [1, 9.9]. The SCTL
database is composed of 20 reference screen content images
and 160 contaminated images that were respectively generated
by compressed by JPEG and H.264 followed by randomly
discarding the coding blocks. The sizes of discarded blocks
are separately 8×8 and 16×16 for JPEG and H.264. A test
was conducted to invite 20 viewers to participate for scoring
the quality of images and record in a 10-category discrete scale
manner. The DMOS value of each image in this database is
normalized to [1.35, 7.15].

Performance Benchmarking. Five evaluation metrics for
correlation performance comparison are routinely employed
in IQA researches. The first and second indices are Spearman
rank order correlation coefficient (SRC) or rank correlation
coefficient and Kendall’s rank-order correlation coefficient
(KRC). SRC is a non-parametric test towards calculating the
degree of association between two variables from the angle of
prediction monotonicity, while, KRC evaluates the strength of
dependence of two variables and it has stricter demands than
SRC. SRC and KRC are defined as follows:

SRC = 1−
6
∑M
i=1 d

2
i

M(M2 − 1)
, (25)

KRC =
Mc −Md

1
2M(M − 1)

, (26)

where di is the difference between the i-th image’s ranks in
subjective and objective evaluations, M is the image numbers
in the testing database, Mc and Md indicate the numbers of
concordant and discordant pairs in the data set, respectively.
Before computing the latter three evaluation indices, it requires
to eliminate the nonlinearity of objective quality predictions.
One typical regression function is the five-parameter function

f(x) = τ1

(
0.5− 1

1 + expτ2(x−τ3)

)
+ τ4x+ τ5, (27)

where x and f(x) are the vectors of raw objective quality
scores and converted scores after implementing Equation (27);
we use the curve fitting process to compute the values of
model parameters {τ1, ..., τ5}. The third one is Pearson Linear
Correlation coefficient (PLC), which is devoted to estimating
the prediction accuracy between the MOS/DMOS values and
converted objective quality scores. The fourth and fifth indices
are Mean Absolute Error (MAE) and Root Mean Square error
(RMS), which measure the difference error between raw and
converted objective quality estimations from the viewpoint
of prediction consistency. Of the five performance evaluation
indices stated above, a value approaching to one for PLC,
SRC and KRC, and approaching to zero for MAE and RMS
illustrates the superior correlation performance.

Performance Comparison. We illustrate the performance
results of 11 IQA algorithms on three screen content image
quality databases in Table 1. The top three IQA models are
highlighted in bold in order for straightforward comparison.
It is apparent that our proposed SVQI metric has constantly
obtained the optimal correlation performance as compared
with the testing IQA metrics. To specify, we only concentrate
on the SRC index, and similar conclusions can be derived for
other four indices. First, on the SIQAD database, our SVQI
model has led to a performance gain larger than 16.5% than
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TABLE 2: Mean Performance comparison of twelve IQA algorithms. We highlight the top three IQA models in boldface.

Average (I) NQM SSIM VIFP VSNR FSIMC GSM GMSD PSIM VSI SPQA GDI SVQI
[46] [10] [47] [18] [13] [48] [15] [14] [16] [21] [7] (Pro.)

SRC 0.7069 0.8334 0.8696 0.7247 0.7986 0.7774 0.8315 0.8104 0.7610 0.8458 0.8653 0.9055
KRC 0.5214 0.6461 0.6773 0.5614 0.6294 0.6105 0.6528 0.6355 0.5891 0.6681 0.6785 0.7322
PLC 0.7177 0.8429 0.8818 0.7313 0.8056 0.7886 0.8392 0.8183 0.7709 0.8553 0.8790 0.9138
MAE 3.5925 2.8721 2.4107 3.5508 3.4063 3.4921 2.8819 2.9849 3.5699 2.4709 2.4526 2.1152
RMS 4.5546 3.6962 3.0822 4.6187 4.3730 4.4891 3.8031 3.9699 4.5784 3.1498 3.0840 2.6548

Average (II) NQM SSIM VIFP VSNR FSIMC GSM GMSD PSIM VSI SPQA GDI SVQI
[46] [10] [47] [18] [13] [48] [15] [14] [16] [21] [7] (Pro.)

SRC 0.6571 0.8028 0.8644 0.6456 0.7110 0.6862 0.7900 0.7695 0.6715 0.8419 0.8540 0.8973
KRC 0.4780 0.6161 0.6770 0.4948 0.5480 0.5300 0.6103 0.5982 0.5091 0.6742 0.6640 0.7214
PLC 0.6641 0.8074 0.8696 0.6539 0.7178 0.6991 0.7962 0.7762 0.6838 0.8596 0.8627 0.9028
MAE 5.7295 4.6286 3.8347 5.7715 5.6691 5.7904 4.6855 4.8094 5.8861 3.8318 3.9010 3.3834
RMS 7.2850 5.9719 4.9017 7.4968 7.2778 7.4406 6.1811 6.4241 7.5422 4.8904 4.9032 4.2262

the benchmark SSIM method. Relative to the second- and
third-ranking VIFP and GDI metrics, the performance gain of
the proposed IQA model separately exceeds 4.5% and 4.7%.
Second, let us see the performance evaluations on the QACS
database. The SVQI model has introduced a performance gain
beyond 5.8% as compared with the SSIM method. In contrast
to the second and third performers, VIFP and FSIMC, the
performance gain of our proposed SVQI metric is greater than
1.6% and 1.7%, respectively. Finally, on the SCTL database,
the performance gain of our model is higher than 4.5% in
comparison to the SSIM method, and larger than 0.34% and
2.7% in contrast to the second- and third-place FSIMC and
GDI models, respectively.

Towards a comprehensive comparison, we further report in
Table 2 two commonly used mean performance evaluations.
We define the mean performance evaluation as

ξ̄ =

∑3
i=1 ξi · πi∑3
i=1 πi

, (28)

where πi are weights, and ξ1, ξ2 and ξ3 are the performance
indices for SIQAD, QACS and SCTL databases, respectively.
The first average, called Average (I), is computed by assigning
three weights πi as the unit, and the second average, called
Average (II), is computed by assigning three weights as the
number of images in each database, namely 980 for SIQAD,
492 for QACS, and 160 for SCTL. It can be found in Table 2,
we are able to derived similar observations. We also bold the
best performing three models for easy comparison. Our pro-
posed SVQI metric has attained noticeably high performance,
much superior to other competing IQA models. We also just
pay attention to the SRC index. In contrast to the benchmark
SSIM method, our SVQI has resulted in 8.6% performance
increase on Average (I) and 11.7% performance increase on
Average (II). VIFP and GDI are the second and third best
performing metrics. Relative to these two, the performance
gain of the proposed IQA metric is respectively greater than
4.1% and 4.6% on Average (I), as well as 3.8% and 5.0% on
Average (II).

Statistical Significance. We further implement the f-test
to compare the statistical significance of our proposed SVQI
metric with other IQA approaches on average. Each metric’s

TABLE 3: Statistical significance comparison of the proposed SVQI
metric and competing IQA models with the f-test. Red (‘+1’) means
the metric in the row is significantly better than the metric in the
column; blue (‘-1’) means the metric in the row is significantly worse
than the metric in the column; gray (‘0’) means the metric in the row
is significantly equivalent to the metric in the column.

prediction residual is compared in the f-test. We denote by
f the ratio between two residual variances and denote by fct
the critical threshold. If f is greater than fct, we consider
that there is a significant performance difference between two
testing IQA algorithms. We assign the confidence level to be
95% as usual. In Table 3, we provide the results of statistical
significance comparison. Red (‘+1’) means the metric in the
row is significantly better than the metric in the column; blue
(‘-1’) means the metric in the row is significantly worse than
the metric in the column; gray (‘0’) means the metric in the
row is significantly equivalent to the metric in the column. It
can be observed that our model is completely statistical better
the overall IQA models tested using the f-test.

Scatter Plots. Scatter plot is a popular way for visualized
comparison. In this paper we provide in Fig. 6 the objective
quality predictions of 9 testing quality metric on the SIQAD
database. The nine IQA models included refer to SSIM, VS-
NR, FSIMC, GSI, GMSD, PSIM, VSI, GDI and the proposed
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Fig. 6: Scatter plots of DMOS versus SSIM, VSNR, FSIMC, GSI, GMSD, PSIM, VSI, GDI and our proposed SVQI models on the
large-scale SIQAD database. CC: red; MB: yellow; GB: orange; J2: green; JP: blue; LC: magenta; WN: cyan.

SVQI algorithms. In each scatter plot, we deploy different
colors to label the sample points that correspond to different
types of distortions: red for CC, yellow for MB, orange for
GB, green for J2, blue for JP, magenta for LC, cyan for WN.
Of course, an excellent IQA metric should predict the image
quality consistently across different distortion categories. One
can see from Fig. 6 that the sample points in the scatter
plot of our proposed SVQI model are more robust across
different types of distortions, which demonstrates its better
consistency in prediction performance. Particularly, as for the
data set associated to contrast change, the sample points of the
proposed IQA model are quite close to the other six types of
distortions, whereas those of the majority of other testing IQA
methods are rather far from the other six types of distortions.
According to this, we believe that our proposed SVQI metric
yields a higher correlation performance.

Implementation. This paper also introduces more image
results distorted by JPEG, H.264 and HEVC standards, which
would be beneficial for interested readers to better understand
how our quality metric works. JPEG is controlled by the
parameter Q while H.264 and HEVC are controlled by the
parameter QP. As exhibited in Fig. 7, the six images in the

top row are corrupted by the JPEG compression. From the left
to right, these images separately correspond to six Q values,
from 25 to 0 with an interval of 5. We can find that, as the
distortion intensity increases, or equivalently, the Q decreases,
the associated quality score of SVQI declines. This reflects
the effectiveness of our IQA model for assessing the JPEG
compression. In Fig. 7, the six images in the middle bottom
row are distorted by the H.264 compression. From the left to
right, the images are respectively associated to six QP values,
from 40 to 50 with an interval of 2. The images show a
reducing trend in terms of visual quality, and likewise, the
SVQI metric delivers faithful quality prediction values, which
proves the SVQI’s reliability. Based on the HEVC standard,
the six compressed images in the bottom row show similar
results with the middle bottom. Further, we compare the two
JPEG and H.264 compressed images, (b) and (i), which have
similar predicted quality scores, and it can be found that the
pictorial parts in (i) are better preserved than those in (b),
while, the results for textual parts are contrary. Besides, we
also compare two images (a) and (o), which are distorted
by JPEG and HEVC compressions, and similar findings and
results can be found.
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Fig. 7: Exemplified screen content images corrupted by JPEG, H.264 and H.265 compressions and the associated quality scores.

Application. In addition to the crucial values in theory, a
good research should have important applications. According
to the current researches, the full reference quality measures
have two main application scenarios. One is used to guide the
image/video compression [49], HDR tone mapping [50], and
image fusion [51], since in this case the reference image is
fully known and available. With this concern, the proposed
SVQI metric can point out which one is the best among
many compression technologies and be used to guide the
parameter optimization in image/video coding. The other one
is the recently designed weak supervision framework dedicated
for learning the robust no reference IQA models [52]. To
address the expensive, time-consuming and labor-intensive
problems when conducting subjective assessment, the quality
estimations of a high-accuracy full reference quality method
can be treated as weak labels of a large quantity of training
images and used for learning the features and developing the
no reference models. Finally, it is worthy to stress that, in real
applications, we suggest to recognize the flow direction of the
text before applying the model of proper direction.

Future work. Our SVQI metric is proposed to merge four
features with a manual and empirical function, i.e., Equation
(24). Clearly, a better way is to intelligently find the strategy of
feature combination, such as distance metric learning. There
exist many excellent metric learning methods [53], [54], [55],
but they were proposed to address the classification problem.
We have attempted to normalize the subjective quality scores
to be 101 classes from 0 to 100 with an interval of 1 and thus
transfer the regression problem to be the classification issue.
However, the experimental results were poor. The support
vector regressor (SVR) is essentially treated as the metric
learning and used for regression [56]. We also checked the

results by using SVR to combine the four features used, but
the performance results are respectively 0.8459, 0.8337 and
0.8687 in terms of SROCC. By contrast with Table 1, the
SVR-based combination scheme is far less than the proposed
SVQI metric. In the future, we will focus on how to better
integrate features with the metric learning in IQA tasks.

4 CONCLUSION

We in this paper have devised a novel method for evaluating
the quality of screen content images. The past few decades
have witnessed the dramatic development and popularity of
computer-generated signals, which have been invading into our
daily lives at a quick pace. Screen content image including
natural scene, graphic and textual images is such a typical
example. Due to the remarkable difference as compared with
traditional natural scene images, screen content images have
posed new challenges and the associated quality evaluation
problem deserves broad attention. Towards this, this paper
has proposed an IQA metric called Structural Variation based
Quality Index (SVQI) from the perspectives of basic and
detailed perceptions of humans. The proposed SVQI metric
systematically combines the measurements of variations in
global structures and local structures (including global lumi-
nance, contrast, complexity, edges and corners) to predict the
final quality score of a screen content image. We carry out
sufficient experiments using three databases related to screen
content images. Our proposed SVQI model has been demon-
strated of the better performance than mainstream and state-
of-the-art IQA models. For promoting relevant researches, our
implementation code will be released to the public soon at
https://sites.google.com/site/guke198701/publications.
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